INHIBITION BY GLUCOCORTICOIDS OF PIT 1 INDUCED ACTIVATION OF TRANSCRIPTION FROM RPR1 PROMOTER FRAGMENTS IN NON PITUITARY CELLS

S. Eljaafari, A.B. El-Fighi and I.M. fahelbum

Department of biochemistry faculty of medicine
Alfateh University

ABSTRACT

Bovine and rat prolactin gene promoter function by glucocorticoids. It was of interest, therefore to examine the possible inhibition by glucocorticoids of pit 1 induced activation of transcription from the 3'- rPrl promoter mutant generated for this study. The studies were carried out by co-transfection into glucocorticoids receptor (GR) deficient CV-1 cells both prol gene promoter and (GR) expression vectors and the reporter CAT plasmids with upstream rPrl promoter fragments. The effect of glucocorticoids was examined by the Addition of dexamethasone (10^{-6} M) to the cultures immediately after transfection. In these studies glucocorticoids receptor (GR) deficient CV-1 cells were used and the (GR) was expressed from an expression vector parker et al. (1994). However, in the case of prolactin promoter fragments (eg, - 1960/+ 38, -44/-423, -190/-423 and – 75 /+ 38) decreased in pitl induced DAT gene expression was seen when the (GR) was expressed but it was evident even in the absence of glucocorticoids.
INTRODUCTION

Comper et al. (2) and Adler et al. (1) clearly demonstrated the inhibition. Bovine and rat prolactin gene promoter function by glucocorticoids. It was of interest, therefore to examine the possible inhibition by glucocorticoids of pit 1 induced activation of transcription from the 3'- rPrl promoter mutant generated for this study.

As illustrated in (Figure1) the studies were carried out by co-transfection into glucocorticoids receptor (GR) deficient CV-1 cells both pit1 and (GR) expression vectors and the reporter CAT plasmids with upstream rPrl promoter fragments. Treacy et al. (1988).

The effect of glucocorticoids was examined by the Addition of dexamethasone (10-6 M) to the cultures immediately after transfection. (Figure 2) shows an inhibitory effect of expression of glucocorticoids receptor on pit 1 activation. Of prPrl (-1960/+38)-CAT, pS (-) p (-423/-44)-CAT on transfection into CV-1 cells Schuster et al. (1988). However the effect is seen UN the presence and absence of dexametha – some (10-6M).

This may reflect an excessive over production of (GR) from the expression vector (Figure 3) again shows the effect on prPrl (-1960/+38) – CAT but low induction of pS (-) – (-75/+38)-CAT expression allowed no conclusion to be drawn in the case of pS (-) p (-75/+38)-CAT Eljaafry et al. (3).

MATERIAL & METHODS

A small set of 3, -deletion mutants of the rat prolactin promoter were generated using the exonuclease Bal 31. They had 5, -border at -423 (transcription start site +1).

DNA sequencing analysis showed the deletion mutant to have 3, -borders at (-44, -120, --190, -230, -960 and -1960) for characterization, they were introduced into pRSV _ Grand pCMV_pit1 (glucocorticoids receptor) expression vectors. The resulting plasmids were then transfected into CV-1 cells.
Inhibition by glucocorticoids of transcription

The transcriptional activity of the prolactin promoter fragments was assayed by measuring the chloramphenicol acetyltransferase (CAT).

RESULTS

In (Figures 1-3) results of a series of preliminary studies on the effects of glucocorticoids on pitl activated expression from the rPrl promoter fragments is shown. Comper et al. (2) and Adler et al. (1) had shown that glucocorticoids suppress transcription from mammalian prolactin promoters.

In these studies glucocorticoids receptor (GR) deficient CV-1 cells were used and the (GR) was expressed from an expression vector Parker et al. (5).

However, in the case of prolactin promoter fragments (eg, -1960/+38, -44/-423, -190/-423 and -75/+38) decreased in pitl induced DAT gene expression was seen when the (GR) was expressed but it was evident even in the absence of glucocorticoids. Maniaatis et al. (3). Whether this reflects the high level of (GR) expression.
Fig. 1: Schematic representation of the pCMV-Pit1 and pRSV-GR (glucocorticoid receptor) expression vectors and the reporter plasmids pPr[-1660+38]-CAT and the pPr promoter fragments tested in p5(-)P(Δ)-CAT constructs.
Inhibition by glucocorticoids of transcription

A. Shown is an autoradiograph of a representative CAT enzyme assay indicating the effect of Pit1 activity on co-transfection into CV-1 cells with pRSV-GR in the presence and absence of dexamethasone (10^{-6} M); lanes 1-5: pPR{-1960+38}-CAT, lanes 6-8: pPR{-175+38}-CAT, lane C: represents where pure CAT enzyme was incubated in place of cell extract. Values for CAT activity are presented as % acetylation of [14C]-chloramphenicol.

B. Shown is the mean CAT activity from 3 independent experiments presented as % acetylation of [14C]-chloramphenicol observed in CV-1 cells co-transfected with pPR{-1960+38}-CAT and pCMV-Pit1 in the presence and absence of pRSV-GR and dexamethasone (10^{-6} M).

Glucocorticoid-Receptor expression vector.
Fig 2. Effect of glucocorticoids on Pit1 transcription from the 3'-Pri-promoter deletion fragments after co-transfection with pCMV-Pit1 into non pituitary cells.

Shown is an autoradiograph of a representative CAT enzyme assay indicating the effect on Pit1 activity on co-transfection into CV-1 cells with pRSV-GR in the presence and absence of dexamethasone (10^-6 M): Lanes 1-2: pSV2-CAT, lanes 3-6: pPrI(-1986/+38)-CAT, lanes 7-10: pS(-)P(-423/-44)-CAT, lanes 11-14: pS(-)P(-423/-190)-CAT. Lane C: represents where pure CAT enzyme was incubated in place of cell extract. Values for CAT activity are presented as % acetylation of [14C]-chloramphenicol.

* Glucocorticoid-Receptor expression vector.
DISCUSSION

In (Figures 1-3) results of a series of preliminary studies on the effects of glucocorticoids on pitl activated expression from the rPrl promoter fragments is shown. Comper et al. (2) and Adler et al. (1) had shown that glucocorticoids suppress transcription from mammalian prolactin promoters. In these studies glucocorticoids receptor (GR) deficient CV-l cells were used and the (GR) was expressed from an expression vector Parker et al. (5).

However, in the case of prolactin promoter fragments (eg, -1960/+ 38, -44/-423, -190/-423 and – 75 /+ 38) decreased in pitl induced DAT gene expression was seen when the (GR) was expressed but it was evident even in the absence of glucocorticoids. Maniaatis et al. (3). Whether this reflects the high level of (GR) expression.

REFERENCES

5- Parker, A. and Stark, F.R.(1994): Simulation of SV40 transcription sensitive analysis of the RNA species present early in
infections by viral or viral DNA. J. Virol. 31, 360-369.